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Abstract- In this paper, fast tinme- and space-parallel algorithnms for solution
of Iinear parabolic PDEs are developed. It is shown that the seem ngly
strictly serial iterations of the tinme-stepping procedure for solution of the
probl em can be conpletely decoupled. This decoupling is achieved by using a
transformation based on the eigenval ue-eigenvector deconpositions of the
matrices involved in the iterations and results in time-parallel algorithms
that enable the solution for all the time steps to be conputed in parallel

The time-parallel algorithms also allow a massively parallel solution of the
probl em t hrough exploitation of parallelismin space. Wth a sufficient nunber
of processors, parallelismin both time and space can be fully exploited,

|l eading to a computational conplexity of max(0(Log N),0(Log M) + 0(Log N) for
a both tine-and space-parallel solution of the problemwhere Mand N stand for
the nunber of time steps and the size of grid. However, for many practica
cases, the conplexity of time-parallel algorithns is independent of M. The
tinme-parallel algorithns have a highly decoupled structure and hence can be
efficiently inplenented on the energing massively parallel MM architectures

with a mninmm conmunication and synchronization overhead

Index Terms- Crank-Ni chol son nethod, M MD parallel architectures, parabolic

PDEs, parallel algorithns, tinme- and space-parallel conputation
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, 1. Introduction

The solution of parabolic PDEs arises in many scientific applications
Therefore, the devel opment of fast and accurate algorithns for the problem has
been extensively studied in the literature. The advent of massively parallel
architectures offers a new opportunity for a faster solution of the problem
However, in order to fully exploit the conputing power of these new architec-
tures, the existing algorithms nust be reexam ned based on their efficiency
for parallel inplementation and eventually new algorithms nust be devel oped
that, fromthe onset, take a greater advantage of the massive parallelism

In this paper, we consider the linear parabolic equation on a bounded

domain @ (which can be one-, two-, or three-dimensional) wth boundary Q' as

(1) Y- PPu in o and T>t>0
at

with boundary and initial conditions as
U=g on Q' and T>t>0
Uu=-f inQand t =0

where Vis the Laplace operator and « is constant. W first consider the
probl em wi th Dirichlet boundary condition. The extension of the results to
Neunann boundary condition is discussed later. Also, for two- and three-
di mensional cases, Q is assumed to be regular, i.e., a square or a cube

The discretization of Eq. (1) by superinposing a uniformgrid on @ and
using the usual finite-different schenes leads to a famly of iterative
met hods gi ven by
(2) (1 + 29840 = (1 - 2800 - 0" =1 . . .M
where | is the unit matrix of appropriate size, M is the matrix arising from
the discretization of Laplace operator, 8 is constant, At = T is the time step
size, and M= 1/7.

The three nmethods for the problemare characterized by the paraneter y as
y = O Explicit method and Eq. (2) becones

(3) W = - 2emutY 2, ..M




vy =1 Inplicit method and Eq. (2) becomes
(4) (1 + 284 wt - yi-n 14, ..., M
¥y = 1/2: Crank-Nicholson (CG-N nmethod and Eg. (2) becones
(5) (I_+ GML)U“) = (I - 5M|_)U“-1) 1% .. ., M
The explicit method is conditionally stable while both the inplicit and CN
nmethods are unconditionally stable. The C-N method is usually preferred since
it is second-order accurate in time while the inplicit method is only first-
order accurate. This better accuracy in time is achieved at a cost of an
additional matrix-vector nmultiplication. It seems, however, less noticed that
the matrix-vector multiplication can be avoided by rewiting Egq. (5) as

(I +64)((\](”-‘-U“-“)=2U“_” i 4 . . ., M
which, by defining W’ = U+ v, allows to express the C-N nethod in a
nodi fied form as

(6) (1/2 + (6/2)ML)W“) _ 0D

(7) U(l) =w’ - U(i-i)

For both serial and space-parallel (see below) conputation, Egs. (6)-(7)
are nore efficient than Eq. (5) since the matrix-vector multiplication is
repl aced by a sinple vector addition. However, for our approach Eq.5)is
more suitable since not only it does not increase the conputation cost but
also it can be better parallelized.

The iterations in Eqs. (3)-(5) represent the tine-stepping, or marching
in time, procedure for solution of the problem From a conputational point of
view, the problemis both time (i.e., nunber of time steps, M and space (i.e,
size of grid, N) dependent. Throughout this paper, the term space-parallel is
used for the, algorithms that exploit parallelismonly in each solution of
Egs. (3)-(5) while the termtinme-parallel refers to those algorithns that
exploit full or partial parallelismin conputation of all vectors w”,

i =1, 2, ..., M Aboth time- and space-parallel algorithmis then the one

that exploits full or partial parallelismin conputation of all vectors U"
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. as well as parallelismin conputation of each vector
The coefficient matrices in Egs. (4)-(6) have a symetric, positive-
definite, and sparse structure. This allows the use of the rather generic
iterative nethods-such as SOR conjugate gradient, etc. [11, for solution of
the linear systems in Eqs. (4)-(6). These matrices have additional structures
simlar to those arising in solution of Poisson Equation. In this sénse,
Egs. (4)-(6) represent a sequence of Poisson Equations. Therefore, the so
called fast Poisson Solvers can be used for the direct solution of the |inear
systems in Eqgs. (4)-(6) with a greater conputational efficiency over the
iterative nethods [2]. The application of serial and parallel fast Poisson
Solvers are discussed in nmore detail in Sections II-IV.
The fact that the application of the inplicit and C-N nmethods requires
the solution of a linear system at each time step has been considered as a
limting factor for efficient parallel conputation [3]. To overcone this
limtation and increase the efficiency for parallel conputation, two different
approaches have been proposed. Gallopoulos and Saad [4] and Serbin [5] have
devel oped inplicit nmethods wherein partial fraction deconposition technique is
enpl oyed to better parallelize the linear system solution. The explicit
method, while limted in its range of stability, is highly efficient for
paral l el and vector conputation since it only involves a sequence of matrix-
vector nultiplications. Mtivated by this greater efficiency for parallel and
vector conputation, Rodrigue [6], Rodrigue and Wolitzer [7], and Evans [8]
have devel oped new explicit methods with greater stability regions. However
these approaches result in algorithns that can be classified as space-parallel
since they attenpt to parallelize the conputation of each iteration while the
overal| conputation in time remains strictly serial
In fact, it seenms that the time-stepping procedure in Egs. (3)-(5)
inplies a strict sequentiality of the computation in tinme. This has notivated

t he devel opnent of new approaches to increase parallelismin tinme. Waveform
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relaxation [9] and w ndowed relaxation {10} nmethods have been devel oped to
increase time-parallelismin the conputation while using the iterative
techni ques such as Jacobi, Gaus-Seidel, and SCR for the linear system
solution, Womble [11] has proposed the parallel time-stepping method in which,
while the exact solution for one time step is’ conputed by a group of
processors, other processors can conpute a good initial guess for the next
time steps based on partial solutions of previous time steps. Time-parallel
al gorithnms based on the multigrid nethod have been proposed by Hacbusch [12]
and Horton and Knirsch [131 wherein parallelismin time is achieved by
performng the conputation for several time steps sinultaneously. However,
these tine-parallel algorithms achieve a rather limted parallelism in tine.
In fact, Womble [ 111 supports the assessnment of [141 wherein sinultaneous
solution for all the tinme steps is not considered practical.

In this paper we develop tine-parallel algorithnms that, for the class of
problens defined by Eq. (1), allow the iterations in Egs. (3)-(5) to be
conpl etely decoupled and performed in parallel [15]. The main enphasis,
however, is on the time-parallel conputation of the C-N nethod. The decoupling
is achieved by transformng Egqs. (3)-(5) into a diagonal form This
transformation, that is based on the eigenvalue-eigenvector deconposition of
the matrices involved in the equations, reduces Egs. (3)-(5) to a set of First
Order Honpbgeneous Linear Recurrences (FOHLR) which then allow the solution for
all the tinme-steps to be conputed in parallel. Qur results clearly prove that,
unlike the general assunption, the iterations in Eq. (3)-(5) can be nore
efficiently parallelized in tine than in space. As a result, even with a
limted nunmber of processors, it is nore efficient to exploit parallelismin
time than in space.

It should be pointed out that, for nost cases considered in this paper,

the eigenval ue-ei genvector deconposition of these matrices have been well




known, However, such a know edge has been usually used for analyzing the
stability of the different nethods (see for exanple [16]) rather than deriving
algorithms for solution of problem This can be explained by the fact that, at
first glance, it seems that the use of eigenvalue-eigenvector deconposition
results in inefficient algorithms for serial conputation. However, while this
is true for the one- and two-dinensional cases, the resulting algorithms not
only are highly efficient for parallel solution of problem with any dinension
but also, for the three-dinensional case, seemto be the nost efficient even
for serial computation

This paper is organized as follows. In Sections II-1V the time-parallel
algorithms for one-, two-, and three-dinensional problens are devel oped. The
extension to Neumann boundary condition and higher-order finite-difference
schemes are presented in Section V. The practical inplenentation of the time-
parallel algorithns is discussed in Section VI. Finally some concl uding

remarks are made in Section VII.

1. One-Dinensional Parabolic Equation
A. Problem Statement and Crank-Ni chol son Met hod

For one-di nensi onal case, we consider @ to be of unit length (i.e. , a rod
of length 1). The parabolic equation is given as

V.o azi xeQ and T>t>0
at ax

with boundary and initial conditions as
U(t,x) = g(x) xeQ' and T>t>0

f(x) xeQ

u(o, x)
Superinmposing a uniformgrid of size Ax = h and using the 3-point centra
difference scheme, the C-N nmethod is then given by

(8) (1, + SHOUY = () - sy yut-D 14, ..., M

where h = 1/(N+1), 8 = o«°t/2n?, 1 is the NXN unit matrix, andMueR""N is a




tridiagonal matri x as Mu = Tridiagl-t, 2, -11.

As stated before, for both serial and space-parallel conputation, the
nodi fied CG-N method given by Egs. (6)-(7) is nore efficient than the direct
solution of Eg. (8). Further conputational efficiency in both serial and
paral l el solution of Eg. (6) can be achieved by exploiting the special
Toeplitz structure of the coefficient matrix (see for exanple [17,181).

In any case, the cost of serial conputation of Egs. (6)-(7) is of Q'N).
This leads to a total serial conputational conplexity of O(MN) for the
problem Wth Q'N) processors, the solution of the tridiagonal systemin
Eq. (6) can be obtained in o(Log N) steps by using, for exanple, the parallel
algorithms in [18,191 while the conputation of Eq. (7) can be performed in
(1) step. This leads to a parallel conputational conplexity of o(MLog N)
which indicates that
a) The conputation is fully parallelized in space, i.e. , the conputation of
each step is fully parallelized, wherein the tinme |ower bound of O(Log N) is
achi eved, and

b The conputation is strictly serial in tine.

B Time-Parallel Algorithm
Fol lowing theorem is used in the derivation of the tine-parallel algorithm

Theorem 1. The eigenvalue-eigenvector deconposition of a symmetric tridiagonal

N

Toeplitz matrix T = Tridiag(b, a, bleR™ is given as

(9) T=qQx

where the matrix Q & Row Q7 1er™N is the set of normalized eigenvectors of

(1)

matrix T with Q) = (2/N+1)Y2

Col{sin(1ju/N+1)}eR", Lt and y=1,2 . . . . N

N

being the ith eigenvector. The diagonal matrix a = Diag(?«i)clRNx is the set of

eigenvalues Of matrix T with A, = a + 2bcos(in/N+1) being the ith eigenvalue.

Proof. See f or exanpl e [20, p.349]. 0

Note that, Qis a Symetric orthonormal matrix, i.e., Q= Q' = Q' Fromthe




above theorem the eigenval ue-eigenvector deconposition of # 1s given as

(lo) Ay = D0
where A, & piagr Je®™ i =1, .. N with
(11) A, =2 - 2cos(im/N+1)

11

Repl acing Egq. (10) into Eq. (8), we get

(12) a1, + & Ut = al - eaqutY i =1,2, .. ., M

ne»

Let U & qu and D, (1, + 52\1)”(1N - &1,). Since Qis an orthonormal

and hence a nonsingular matrix, it then follows that

(13) gt = pgt" =1, 2, .. ., M
which represents a FOHLR However, Eq. (13) inplies that

(14) ot = @)'o® 1=1,2 ..., M
The diagonal matrix Dlis a function of problemsize and time and space
discretization parameters. |f a same problemis solved many tines for

different boundary and/or initial conditions, then all the matrices (Dl)1 can
be preconputed (see also Sec. VI), In this case, starting with §‘ a1l ¢! can

be conputed in parallel fromEq. (14). Assuning that all matrices (Dlﬂ are

preconputed, the tine-parallel algorithmis then given as

Step I 0 = g

Step I1: 0" = (p)ig@ i=1,2..., M
1

Step 111; u@ = o =12, . . ., M

C. Conparison of Serial, Space-Parallel, and Time-Parallel A gorithns

The conputational structure of the time-parallel algorithmis shown in
Fig. la. As can be seen, the conputations in Steps II-111 are conpletely
decoupl ed and can be performed in parallel for all i =1, 2, . . . . M Inthis
case, the conputational conplexity of time-parallel algorithm unlike that of
serial and space-parallel algorithms, is independent of M That is, the QM
dependency is reduced to O(I), However, as discussed bel ow, care shoul d be

taken in analyzing the performance of the time-parallel algorithm




The matrix Qis the one-dinensional Discrete Sine Transform (DST) operator.
Therefore, the multiplication of any vector by the matrix Qin Steps | and 111
is tantamount to perform ng a one-di mensional DST which, by using the fast
t echni ques, can be conputed in 0(NLog N) [211. It follows that the conplexity
of serial inplementation of the time-parallel algorithmis of 0(MNLog N). This
inplies that the tine-parallel algorithmis not efficient for serial
computation. In fact, the algorithmis asymptotically i nconsistent in the
sense defined by Otega and Voigt [3] since the conplexity of its serial
i npl enentation, i.e., O(MNLog N}, is greater than that of the best serial
algorithmfor the problem i.e., O(MN).

Due to this asynptotic inconsistency, the performance of the tine-parallel
al gorithmstrongly depends on the degree to which parallelismis exploited in
its conputation. Using M processors, that corresponds to a coarse grain
paral l el inplenentation and is designated as Mparallel inplementation, the
conputational conplexity of the tine-parallel algorithm1s of O(NLog N). If
M>Log N (which is likely to be the case for many practical applications), then
the time-parallel algorithm achieves a speedup of 0(M/Log N) over the best
serial algorithm However, only for M>N the time-parallel algorithm becones
faster than the space-parallel algorithmwth a relative speedup of O(M/N}.
This inplies that for problems with small Mthe tine parallel-algorithm may
become |ess efficient than the best space-parallel algorithm

Using O(MN) processors, that corresponds to a two-level or a both time- and
space-paral l el inplementation, the DSTS in Steps | and IIl can be perforned in
0(Log N [181 and the conputation in Step Il in Q1) which leads to an overall
conputational conplexity of 0(Log N). This represents a speedup of O(MN/Log N)
over the best serial algorithmand a relative speedup of (M over the best
space-paral lel algorithm The latter performance is of particular significance
since it indicates that by increasing the nunber of processors fromQN) to

O(MN) a linear relative speedup of QM can be achieved.
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111. Two-Di nensional Parabolic Equation
A Statement of Problem and Crank-Ni chol son Method

For the two-di mensional case, we consider @ to be a unit square, The
parabolic equation is given as

2
U _ 2 (?__Ll + ‘iu-z-) x,yeQ and T>t>0
at ax * 8y

with boundary and initial conditions as

g(x,y) X, yen' and T>t>0

Ut,x,y)

u(o, x,y) f(x,y) X, yeR
Superinposing a uniformgrid on @ (Ax = Ay = h) and using the usual 5-point

finite difference scheme, the CG-N nethod is given by
(1) _ (1-1) _ .
(15) (INZ + 6ML2)U —(INz - GMLZ)U i=1,2 . ...)

where, as before, h = 1/(N+1) and & = o’t/2h2. | xa is the N2xN2 unit matrix,

2 2
A, = Tridiagl-1, A —IN]e[RN *N is the block tridiagonal matrix arising from

the discretization of two-dinensional Laplace operator, and AeR™" is a
tridiagonal matrix as A = Tridiag(-1, 4, -1].

Again, the nodified C-N nethod given by Eqs. (6)-(7) is nore efficien
than the direct solution of Eg. (15) since the nultiplication of a block
tridiagonal matrix by a vector is replaced by a vector addition. For this
case, the coefficient matrix in Eq. (6) has a simlar structure to &wmch
is the matrix arising in solution of two-dimensional Poisson Equation. Thus,
the fast Poisson Solvers, i.e., Bouneman's Variant of Cyclic Reduction (CR)
algorithm|[22,23], Matrix Deconposition (MD) algorithm][23,24], and Fourier
Analysis (FA) algorithm([251, with a serial conplexity of O(NLog N) can be
used for direct solution of Eq. (6). This leads to a conmplexity of 0(NLog N
for each solution of Eq. (6) and an overall conplexity of O(MfLog N) for the
serial conputation of problem

For space-parallel conputation, both the MD and FA algorithns are nore

efficient than the CR algorithm Sweet [26] and Gallopoulos and Saad [27] have
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shown that parallel conputation of CR algorithm can be perforned in 0(Log™N)
steps with o(N%) processors. However, wth 0(N°) processors, parallel
conmputation of both MD and FA al gorithns can be performed in O(Log N) steps
[18,281. Therefore, by using the parallel variant of either MD or FA
algorithms with o(N%) processors, each solution of Eg. (6)can be conputed in
O(Log N) while the vector addition in Eq. (7) can be performed in 0(1). This
| eads to an overall conputational conplexity of o{MLog N) for space-parallel
solution of the problem which indicates that the conputation is fully

parallelized in space but is strictly serial in time.

B. Time-Parallel Al gorithm
The time-parallel algorithmfor two-dinensional case is based on the

derivation of the eigenvalue-eigenvector deconposition of matrix L Tothis

2 2
end, let us first consider a matrix Q ®piagle, Q@ . . .. Q Q & ™. By

definition, it follows that Qis a symretric orthonormal matrix and hence
2 2
Q@ =Q" =¢'. Aso, consider a permutation matrix PeR ‘Nas

“lo... o 00 ... 0{,00...0000... 0 ... i00... 0]
00.,.0 10...0{00...000...0{ ... 1 00...0
00 0 00...0/00...0 00... 0] i 10 0
0" i o 0076006006 00 .0
00 0 01 0 00...0 00 0 t00...0
00 ...0 00...0i00...000...0 ... f01...0
P: : H
00 ...1 767GTIETeTeTITeTeTe T el f0T0TT
00 .,.0 00...1 00...0 00...0f ... L 00...0
00 ...0 00...0000... 0 00...0{ ... {00 ... 1
Pis a symetric pernutation matrix, i.e., P=p% and hence PP:Inz'

Theorem 2. The matrix MLZ has an eigenval ue-ei genvector decomposition as

(16) M, = QPQAQPQ

2 2
where A, 8 Diagir_, }eB' ™, Land J=1,2, . . .. N with
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“(17) Ay, - 4 - 2cos(im/N+1) - 2cos(Jn/N+1)

Proof. From Theorem 1, the matrix # , can be expressed as

(18) M, = Tridiagl-I, QA1Q, -I 17 QAQ
W22
wher e AR ‘U 1is a block tridiagonal matrix as A, = Tridiagl-1, SN

with A'l = Diag(h’“)eﬂ?"x". i =1,2,. ..,N and A’“ =2 + A“ = 4 - 2cos(in/N+1).

The bl ock el enents of A, are di agonal and hence A,can be reduce to a bl ock

diagonal matrix as

(19) A, = PPAPP= P(PAaP)P: PT,P

where T, = Diag(TZ‘)CIRNzXE and T,, = Tridiagl-1, ALy -11eR™",
=12 ... . N Fromegs. (18)-(19), 4, can be expressed as
(20) ML2 = QPT,PQ

The submatrices T, have a symetric tridiagonal Toeplitz Structure.
Therefore, from Theorem 1 and definition of Q and T, the eigenvalue-

ei genvector deconposition of T,is given by

(21) .= aQ

The eigenvector-eigenvalue deconposition of matrix M in Eq. (16), is then
obtained by replacing Eq. (21) into Eg. (20). 0

Note that, fromthe definition of Q and P,it fo lows that the matrix e = QPQ
is symmetric and orthonormal, i.e., 6 =8" =g

The tine-parallel algorithmis derived by replacing Eq. (16) into Eg. (15)
(1) _ (i-1)
(22) QPQ (| o T OSAQPQUTT= QPRI - 8X,)QPQU
Let U & opu®’ and D& (1, + «saa)"(IN2 - 81). Since the matrix e QPQ
I S orthonormal and hence nonsingular, it then follows that
(23) g =p gtV i =1,2, . . ., M
which inplies that
(24) i = ()'o” i =1,2, .. ., M

Again, assuming that all the diagonal natrices (Dz)1 are precomputed, the

time-parallel algorithmis given as

12




~(0)

(0)

Step I © = opou'® = eu
Step 11. TR (0,)'0% i =1,2,. .., M
Step 111: u® —opoi = 60" i=1,2.. ., M

C. Conparison of Serial, Space-Parallel, and Time-Parallel Al gorithns

The conputational structure of the time-parallel algorithmis shown in
Fig. I'b. Again, as can be seen, the conputations in Steps Il and 111 are
conpl etely decoupled. If these conputations are performed in parallel then
the conputation conplexity of tine-parallel algorithmis independent of M.

The matrix e = QPQis the two-di mensional DST operator. Therefore, the
mul tiplication of any vector by matrix e in Steps | and Il is tantanount to
performng a two-dinensional DST which, by using the fast techniques, can be
performed in 0(N’Log N) steps. It then follows that the conplexity of serial
i npl ementation of the tine-parallel algorithmis of o(MN’Log N). This inplies
that the algorithmis asynptotically consistent, i.e., its serial
inpl ementation is, asynptotically, as fast as the best serial algorithm for
the problem In terms of actual nunber of operations, the tine-parallel
algorithmis also conpetitive with the best serial algorithms (see Sec. VI).

For the two-dinensional problem due to this asynptotic consistency, the
time-parallel algorithmis always efficient regardless of the parallel
i npl enentation strategy and the nunber of processors enployed. Wth M
processors, the conputational cost of time-parallel is of 0(N°Log N) which
represents a |inear speedup of QM over the best serial algorithm By using
O(MN®) processors, i.e., a two-level parallel inplenentation, parallelism in
both time and space can be fully exploited. In this case, the conputations in
Steps | and 111 can be performed in 0(Log N)- since a two-dimensional DST
consists of two steps wherein at each step N decoupl ed one-di nensional DST' S
are conputed- and the conputation in Step 11 can be conputed in Q(1). This

| eads to a conputational cost of 0(Log N) for both tine- and space-parallel
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algorithm Conpared with the best space-parallel algorithm this represents a
relative speedup of (M at a cost of an increase of QM in the nunber of

processors which indicates a very high processors utilization factor,

V. Three-Dinmensional Parabolic Equation
A, Statement of Problem and Crank-N chol son Met hod

For the three-dinensional case, we consider the parabolic equation in a
unit cube domain as

8y . o2 (6 3 U) x,y,zeQ and T>t>0
at ax * 8y” oz

wi th boundary and initia. conditions as

Ut,x,y,z) = g(x,y,2) x,y, zeQ' and T>t>0

U(0,x,y,2) = f(x,y,2) X, Y, zeQ
Superinposing a uniformgrid on @ (AXx = &y = Az = h) and using the usual
7-point finite difference approximation, the GN nethod is given by

(1

+ 6ML3)U = (Iua ) 6Mx.a)u

(|N3

where, as before, h = 1/(N+1) and & = oCt/2n2. | " is the N3xN3 unit matrix,

3 .3
N xN

ML3 =Tridiag[-IN2, B, -I__leR

N2 is the block tridiagonal matrix arising

from the discretization of three-dinmensional Laplace operator, and

2
B= Tridiagl-1, A, IN]e[RN xN

is a block tridiagonal matrix wth
A = Tridiagl-1, 6, -11er™N,

Again, the nmodified C-N method given by Eq. (6)-(7) is nore efficient than
the direct solution of Eg. (25). For this case, the coefficient matrix in
Ef. (6) has a structure simlar to ML3 whi ch is the matrix arising in solution
of the three-dinensional Poisson Equation (see for exanple [29]). Therefore,
the fast Poisson Solvers for the three-dinensional problem can be used for
direct solution of Eq. (6).

The extension of the CR and MD algorithms to the solution of three-

di mensi onal Poi sson Equation has been reported in [29,30,31]. The analysis in

[30] indicates that the CR and MD algorithns have a serial conputational
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conplexity of 0f N’Log®N) and Q(NLog N), respectively. There seems to be no

report on the extension of the FA algorithm However, it is rather
straightforward to show that the algorithm can be extended to the solution of
three-di nensi onal problem with a conputational conplexity of Q'NLog N). Note
that, for the three-dimensional problem both the MD and FA algorithns are
faster than the CR algorithm

There are very few reports on parallel conputation of fast Poisson Solvers
for the three-dinensional case. Saneh [291 and Sweet etal [31] have studied
paral l el conputation of the MD algorithm Both works are concerned with sonme
specific parallel inplenentation of the algorithm wherein limted parallelism
is exploited. However, based on the analyses in [29,311, it is straightforward
to show that, by using oN®) processors, the tinme |ower bound of 0(Log N) can
be achieved in parallel conputation of the MD algorithm It can also be shown
that the same bounds on time and processors are achievable in parallel
conputation of the FA algorithm However, the analysis of parallelismin
computation of the CR algorithm seens to be less straightforward. In fact,
a first step, the extension of the works in [26,271 to the three-dinensiona
case needs to be studied, Therefore, only parallel variants of the MD and FA
algorithnms are considered here, W can conclude that, by using o(N*)
processors and parallel variant of either the MD or FA algorithns, each
solution of Eq. (6) can be conputed in 0(Log N while the vector addition in
Eq. (7) can be done in Q). This leads to a conplexity of 0(MLog N) for
space-paral l el solution of the problemwhich, again, indicates that the

conputation is fully parallelized in space but is strictly serial in tine.

B. Time-Parallel Algorithm
The tinme-parallel algorithmfor three-dinensional case is al so based on
the derivation of the eigenval ue-eigenvector deconposition of matrix Mo To

this end, let us first consider two matrices Q and & as
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3 3 3

N and © £ Diagle, e . . . . 6 6ler* ‘N

A N3
Q= DiaglQ, @, . . . . Q QleR *

Fromtheir definition, it follows that Q and 6 are symetric orthonormal

-1 t -1

matrices, 1.e.,Q=Q‘=Q and ® = 6 =8 . Aso, consider a permutation

33
matrix PeR® ‘N that has a structure simlar to Pbut each of its block has N
rows and N'colums. Note that, unlike P,the matrix # is not symmetric. But
ppt = p'p = Ing since P is a permutation matrix.

Theorem 3. The matri X Mu has an eigenvector-eigenvalue deconposition as

— oot
(26) I\/|_3 = 8P Qx QP8
A NoxN® - :
wher e Ay = Diag(?«aijk)elR , 1, j, andk=1,. . ., N with
(27) A3Uk =6 - 2cos(in/N+1) - 2cos(jn/N+1) - 2cos(kn/N+1)

Proof. From Theorem 2, the matrix # , can be expressed as

(28) M, = Tridiag(-1_

L3 , 6A26, -1.] = ®A3®

2 N2

33
wher e A’Z =21 o tA and A3etR" ‘N is a block tridiagonal matrix as

A, = Tridiagl-I_, AL -1,1 The bl ock el ements of A are diagonal and hence

A can be reduced to a block diagonal matrix as
(29) A = P'PAPP = PHPAPYIP = fP‘Tafp

3

3
where T, 8 Diag(T. )eR" ™

, 1and y=1,2, ,.., N and
31

T, ; = Tridiagl-1, A’ZU, -11eR™*. From Egs. (28)-(29), M, is expressed as

(30) M , = 6P'T P8

The tridiagonal matrices T31j are symretric and Toeplitz. Therefore, from
Theorem 1 and definition of Qand T, the eigenval ue-eigenvector deconposition
of T,is given by

(31) T, = 0

The eigenvector-eigenvalue deconposition of matrix M in Eq. (26), is then
obtained by replacing Eq, (31) into Eg. (30). o

Note that, the matrix & = QPe is not symetric but it is orthogonal since

oot = (QPe) (8P'Q) = | 3

The time-parallel algorithmis derived by replacing Eq. (26) into Eq. (25)
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t (1) _ t {(i~1)
(32) eP°QU I + sx)QPeu’’ = @P'Q(I - &1 )QPeU

I
N

o) -1 . . .

= (I, + ) (I - &) Miltiplying both sides

~(1) A ()
Let U = QPeU " and D3 N3

of Eq. (32) by the nonsingular matrix ¢ = QP® gives
~(1) _ ~(1-1)
(33) i’ =DpU
which inplies that
(34) o = )o@
Again, assunming that all the diagonal matrices (DB)1 are precomputed, t he

tinme-parallel algorithmis given as

Step 1: 10 = @ e = w®
Step I1: o' =)' i=1,2,. . ., M
Step Il1: u't = eptQd!t! = o'g"" =1, 2, ..., M

C. Conparison of Serial, Space-Parallel, and Tine-Parallel Al gorithns

The computational structure of the time-parallel algorithmis shown in
Fig. 1c. Again, the conputations in Steps Il and 111 are conpletely decoupl ed.
|f these conmputations are performed in parallel then the conputational
conplexity of tinme-parallel algorithmis independent of M

The matrices ¢ = ePQ and ¢ = @P'Q are the operators for tree-dinensional
direct and inverse DST. Therefore, each matrix-vector nultiplication in Steps
| and Il is equivalent to performng a three-dinensional DST which, by using
the fast techniques, can be conputed in O(NLog N) steps. It follows that the
conmplexity of serial inplementation of the time-parallel algorithmis of
0(MN’Log N) which indicates the asynptotic consistency of the algorithm
Interestingly, in ternms of total number of operations, the tine-parallel
algorithmis even more efficient than the MD and FA algorithms for serial
solution of the problem (see Sec. V)

Due to the asynptotic consistency and also the efficiency in terms of the
total nunmber of operations, the time-parallel algorithm for three-dinensional

case is highly efficient regardless of the parallel inplenentation strategy

17




and the nunber of processors enployed. Wth M processors, the computational
cost of tinme-parallel algorithm isof QU NLog N) which indicates a l|inear
speedup of OM over the best serial algorithm By using o(MN®) processors,
i.e., a two-level. parallel inplementation, parallelismin both time and space
can be fully exploited. In this case, the conmputations in Steps | and Ill can
be performed in 0(Log N)- since a three-dinensional DST consists of two steps
wherein at each step N decoupl ed one-dinensional DSTS need to be computed-
and the conputation in Step Il can be conputed in Q). This leads to a
conput ational cost of 0O(Log N for both time- and space-parallel algorithm
Conpared with the best space-parallel algorithm this represents a relative
speedup of (M at a cost of an increase of (M in the nunber of processors

which indicates a very high processors utilization factor.

V. Some Extensions of Tine-Parallel Algorithm
A Explicit and Inplicit Methods

Qur approach can be also applied to parallelize the iterations of the
explicit and inmplicit nmethods by sinply replacing the eigenvalue-eigenvector
deconposition of appropriate matrix M _in Eqgs. (2) and (3), The resulting
tinme-parallel algorithms will have exactly the same conputational structure
and cost as those for the C-N nethod with the only exception that the diagonal

matrices DJ, J=1 2, 3, will be different.

B. Neumann Boundary Condition

A frequently arising type of boundary condition in solution of parabolic
PDEs is the Neumann type wherein the normal derivative, 8U/8n, i s specified on
the boundary, In order to develop tine-parallel algorithnms for solution of the
probl em with Neumann boundary condition, |et us consider the two-dinensional
probl em of Sec. 111. Wth the Neumann boundary condition, the discretization
of two-dimensional Laplace operator results in a block tridiagonal matrix

2 2

~ N“xN
M eR * as [231
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The tine-parallel algorithmis derived by devel oping the eigenvalue-
etgenvector deconposition of matrices A and ith as foll ous.

Theorem 4. The ei genval ue-ei genvect or deconposition of a tridiagonal matrix

a  2b
. b a b
T =
b “a *“b
] 2b

s given as
(35) T ="
where the matrix Q8 Row(Q“3eR™, 1 =0, 1, . ... N1, is the set of
ei genvectors of matrix Twith Q" = Col{cos(ijnN-1)}eR", | = O 1, . . . . N1,

being the ith eigenvector. The diagonal matrix A 2 Diag{A }eR"™

s the set of
ei genval ues of matrix Twith ii = a + 2bcos(in/N-1) being the ith eigenval ue.
Proof. Fi rst, consider a specific matrix T' for which a=2and b =-1. For
mtrix T, Van Loan [21, p.252) has shown that the eigenvectors are given by
matrix Q and the eigenvalues by a diagonal matrix A’ = Diag{i’l)em"x" wher e

Al =2 - 2cos(in/N-1) =0, 1, .. .. N1

The result of [211 can be easily generalized by noting that any matrix T can

be witten in ternms of T as
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(36) T=(a+201 -bl" = Q(a + 261 -bA')Q™*
which inplies that
A= (a + 2b)IN - bA’ s il = (a + 2b) - bi; = a + 2bcos(in/N-1) g
The eigenval ues of submatrix A, for which @ =4andb= -1, are then given as
(37) 5‘1 = mag{i“} With i“ = 4 - 2cos(in/N-1) i=0,1, . . .. NI
The elgenvalue-eigenvector decomposition of matrix j‘Lz i's derived in a
simlar way as that of M and by using the result of Theorem 4.

Theorem 5. The ei genval ue- ei genvector deconposition of matrix j{LZ is given as

A ALAnr Al Ay
(38) M, = QPOAQPQ
A A - Aoa Nsz2 > A ~ N2 2
where Q2 Diag{Q, Q,. . . . Q, Q] eR and A, = Diag{i, )eR N for i and
J=0 1, ..., N1, with
(39) XZU =4 - 2cos(in/N-1) - 2cos(jn/N-1)

Proof. From Theorem 4 and Eq. (37), /hLz is witten as

-

— Ar A=l
(40) M, = QAR
where Ais a block tridiagonal matrix given as

A =21
N

The bl ock el ements of i\a are diagonal and hence 7\2 can be reduce to a bl ock

di agonal matrix as

~

(41) A, = PPAPP=P(PAP)P = PT P

2

IS ~ 2 ~ . . .
where T, = Diag(Tal}elRN *¥ and TZICRNXN iS a tridiagonal matrix with a

structure sinmilar to T for which a = i“ and b = -1, From Theorem 4, the

eigenvalue-elgenvector deconposition of TZ is given by

S |
(42) T, = @0
The ei genval ue-ei genvector deconposition of matrix ﬁm in Eq. (38) follows by

substituting Eqs. (42) and (41) into Eg. (40). 0
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Note that the matrix  is not orthogonal. However, as shown in [21], Q

and Q™' can be expressed as
(43) Q=CSand Q' = (2N-1)8'C

where C is the one-dimensional Discrete Cosine Transform (DCT) operator and S

is a diagonal scaling matrix as S=102, 1, . . . . 1, 2]. Let us define

N, = (@ )/0-1% ¢ = Diagls, S, . . . . SL, ¢ = piag(s™, 87, . . . . s7), and
C = piaglc, C, ,.., O. Equation (38) can be then witten as

(44) M, = CIPCSN’$"'CPY™'C = CYPCA CPY™'C

Simlar to the two-dimensional case with Dirichlet boundary condition, the

a

tinme-parallel algorithmis derived by replacing the expression of matrix A

1

L2
given by Egq. (44), into Eg. (15).

The matrices ¥ = c#pc and ¥ = cp¢™'c do not represent the operators for
the direct and inverse two-dimensional DCT. However, nultiplication of any
vector by matrix C corresponds to performng N DCTS of size N which, by using
the fast techniques, can conputed in a time of O(NLog N). Note that, since
the mtrices S and s™ are di agonal, the tine-parallel algorithm for Neuman
boundary condition have a same decoupled structure as that of Section III.

For one-di nensional case the derivation of the tine-parallel sinply
follows from Theorem 4. A'so, for three-dinensional case, the derivation of
time-parallel algorithmis straightforward and can be carried out in a simlar

fashion as that in Section I|V.

C. Higher-Oder Finite-Difference Schenes

The tinme-parallel algorithms can be also extended to the solution of
probl em whil e using higher-order finite-difference schenes. To this end, |et
us consider the two-dimensional problem of Section IIl. The five-point finite-
difference scheme has a second-order accuracy, i.e., o(h®). However, if the
problem is discretized by using a nine-point finite difference schene then a

fourth-order accuracy, i.e., o(h*), can be achieved. The discretization of
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t wo- di mensi onal Laplace operator by using a nine-point finite difference

scheme results in a block tridiagonal matrix Itw as [231
2

2
M _ = TridiaglE, D, EleR ™ with D = Tridiag(-4, 20, -41eR™ and

L2

E= Tridiagl-1, -4, -1]eR™"

. From Theorem 1, it follows that
a) The submatrices D and E have a common set of eigenvectors given by Q and

b) The eigenvalues Of submatrices D and E are given as
D

A Diag(k?)clR"x" Wi th A? =20 - Scos(iaN+1),i =1, 2, . . . . N

AE'I
i

Dlag{?\::)clRNXN with af = -4 - 2cos(im/N+1),i =1, 2, ..., N

Theorem 6. The matrix Ith has an eigenvalue-eigenvector deconposition as

(45) k_, = QPQA_QPQ
z < N2 N2
where X, = Diag{i, , }eR ., tand J=1, 2, ... , N, with
(46) iau = 20 - 16cos(in/N+1) - 4cos(in/N+1)cos(jn/N+1)

Proof. By using the eigenvalue-eigenvector deconposition of subnatrices C and
D, the matrix MLZ can be witten as

(47) A, = Tridlagi®e, QA°Q, @Al = QAR

L2
22
R, = Tridiag[A®, AD, 2%1eR" ‘N is a block tridiagonal matrix whose bl ock

el enents are diagonal and hence it can be reduce to a block diagonal matrix as
(48) A, = PPAPP= P(PAP)P= PTP

= = Co_ = _ E ,b JE; = .
wher e T, = Diag(Tz‘}, i =1, . . . . N and T, = Tridiag D‘l’ A AI],. T, is a
symetric tridiagonal Toeplitz matrix whose eigenvalues are given as

= _ 4D E

A(TZI) = A‘ + Zkicos(Jn/Nﬂ)
= 20 - 16cos(in/N+1) - 4dcos(in/N+l)cos(Jn/N+1)J =1, 2, . . . . N

The eigenvalue-eigenvector deconposition of 'Tz IS given as
(49) T, =QQ
The eigenvector-eigenval ue deconposition of nmatrix I{Lé in Eq. (45) is then
obtained by replacing Egs. (49) and (48) into Eq. (47). )
The time-parallel algorithmis derived by substituting the eigenvector-

eigenvalue deconposition of matrix ItLZ into Eq. (15).
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Theorem 6 indicates that the matrices Ith and M, have a conmon set of
elgenvectors but different sets of eigenvalues. Therefore, the conputational
structure and cost of the time-parallel algorithm for nine-point scheme are
exactly the sanme as those for five-point schene. This inplies that a higher
accuracy in space discretization can be achieved with no additional

conputation or conmmunication cost.

VI. Sonme Issues in Practical Inplementation of Time-Parallel Al gorithms
A. On-line Conputation of Diagonal Matrices (Dj)‘

In discussing the time-parallel algorithns in previous sections, it was
assumed that the diagonal nmatrices (D))’,i =1 ... . Mandj =1, 2, 3(J
i ndi cates the dinmension of problem) can be preconputed. This assunption holds
for cases wherein a sane problemis solved many tines with different initial

' can be preconputed since

and/ or boundary conditions. For such cases, all (Dj)
they are only function of problem size and time and space discretization
parameters. Here, we consider the case wherein the problemis solved once and
hence the cost of conputing (D})’ needs to be included in the overall cost.

To begin, note that, the conputation of (DJ)1 and the vector U in Step
| are conpletely decoupled and can be performed in parallel. Using o(MNY)
processors, the parallel conputation of (DJ)' from the set of FOHLRS
(50) (DJ)’ = DJ(DJ)“‘ 1=1,2, ..., M
can be performed in 0o(Log M steps [19] while the conputation of the vector

~(0)

U takes o(Log N) steps. If these two conputations are performed in parallel

then the overall cost of conputing U‘ and (D.)"i's max(0(Log N), O(Log M).
Since with o(MN’) processors the conputations in Steps Il and Il can be
performed in o(Log N steps, it then follows that the overall conputational
complexity of tinme-parallel algorithns is of max(0(Log N),0(Log M) + (Log N),
that is, of 0(Log N + 0(Log M for M>N, and of 0O(Log N) for M<N.

For practical inplenentation, the parallel conputation of (DJ)i can be
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performed with no comunication so that the highly decoupled structure of the

algorithms is preserved. To this end, consider the parallel inplenentation of
time-parallel algorithns by using M groups of processors. Note that any group
of processors, say Goup i, needs only to conpute (D})1 and not all the

i nternediate powers of Dj. In this case, each group of processors conputes the
FOHLR in Eq. (50) in a different fashion as foll ows.

a) For i = 2" the conputation of Eq. (50) is perforned as

2)( 2‘(-12
(51) ()% [(DJ) ] .., Log,t

=12)
with a serial conputational cost of 0(Log,1).

b) For 1 # 2" but 2°1>2"%, we can write tas

(521 =y a2

wher e a, =0 or 1. Note that, Eq. (52 describes the binary representation of

i which is based on the fact that any integer i, 2"1>2"", can be represented
k

by n bits, For this case, first all (DJ)Z,k: 1, 2, . . . . (n-l), are conputed

fromEq. (51) in o(n-1) steps and then (DJ)l is conputed as

k

i _ (n-1) 2
(53) )" = o) k

Note that, in the above product only those (Dj)2 for which a, "1 need to be
included. For the worst case, i.e., where all a =1, Eq. (53) involves the
multiplication of n ternms and hence its serial conputation can be done in
0(n-1) or O([_Logzij) steps. (|x) indicates the greatest integer snaller than
or equal to x. ) The overall conputation cost is determned by that of
comput ati on of (D,)H which for the worst case, i.e., M =2"- 1, is of
0(2[Log2MJ) wher e [LogzMj =m

Conpared with the direct parallel conputation of the FOHLR in Eq. (50),
the conputation cost is at nost increased by a factor of about two. However,
this scheme does not require any communication among groups of processors and

hence the decoupled structure of the overall conputation is preserved.
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B. Performance of MParallel Coarse-Gain |nplenmentation

Qur discussions in previous sections have been mainly concerned with the
asynptotic performance of tine-parallel algorithms. Here, we briefly discuss
the coarse-grain .implementation of the algorithns on massively parallel MM
architectures and analyze the expected performance. In this discussion, only
two- and three-dinensional problems are considered.

At this point, we need to draw a conclusion regarding the relative serial
efficiency of the CR, MD, and FA algorithms. This conclusion forms the basis
for the choice of optimal serial algorithm which 1s needed for analyzing the
performance of the tine-parallel algorithns, For two-dinensional case, the CR
algorithmis faster than both the MD and FA algorithnms due to a smaller
coefficient of NLog N-dependent terms [321. However, one nmjor drawback of
the CR algorithmis that its application is restricted by the size of problem
N. Sweet [331 has generalized the CR algorithmfor the arbitrary problem size
though with a slightly reduced efficiency. For three-dimensional case, as
di scussed before, the CR algorithmis less efficient than the MD and FA
algorithns. It can be also shown that, for both two- and three-dimensional
cases, the MD algorithmis faster than the FA algorithm by about a factor of
two. Therefore, for both two- and three-dinensional cases, we consider the Mp
algorithm as the fastest serial algorithmfor solution of Eg. (6).

From the above discussion, it follows that a fast alternative for serial
solution of the problemis to use the nodified CN nethod, given by Egs. (6)-
(7), along with the MD algorithm for solution of the linear systemin Eq. (6).
Using this alternative, it can then be shown that the cost of serial solution
of problem denoted as T, is given by
(54) T, = W (-1)FsT + TS + VA)
where FST, TDS, and VA denote, respectively, the cost of one-dinensional fast
sine transform of size N tridiagonal system solution with NxN symetric

Toeplitz coefficient matrix, and addition of two Nx1 vectors. The cost of
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serial inplenentation of tinme-parallel algorithns, denoted as Tsz, is given by
(55) T, = NY1((M+1) (JFST + DW) - DW)

where DMV denotes the cost of nultiplication of an NxN di agonal matrix by an
Nx1 vector, As can be seen, T T, for j = 2 but T, <T, for j = 3. This
implies that the time-parallel algorithmis the nost efficient even for serial
solution of three-dinmensional problens.

Now consider the Mparallel inplementation of time-parallel algorithns
wherein the conputation of ‘' and U(l) s assigned to the ith processor.
Assuming that Step | is perforned in a serial fashion but the conputations in
Steps Il and Ill are perforned in parallel, the conputation cost of this
M paral l el inplenentation strategy, T IS obtained as
(56) Tp = N7 (2gFsT + DW)

The speedup of Mparallel inplementation, SP,o» is then given by
SP, = T,,/T,, = M(2FST + TDS + VA)/(4FST + DW) j=2

MP

SP, = T_/T, = ((M#1)(3FST + DW) - DMV)/(6FST + DW) j = 3
Since TDS, VA, and DW are of Q(N) while FST is of 0O(NLog N), SP Can be
approxi mated as
(57) Sp,, = M2 j=2
(58) SP,, = (M¥1)/2 j=3

However, the performance of this Mparallel inplementation strategy should
be al so judged by taking into account the communication and synchronization
overhead. In fact, this strategy corresponds to a straightforward mapping of
the Figs. |b and 1c and, as can be seen, the only communication activity
invol ved is the broadcasting of vector 3 to all processors. |t also
represents a highly coarse-grain parallel conputation strategy in which each
processor performs a series of conputations in Steps 11 and 111 with a total
cost, of NY'(yFsT + DW) asynchronously and without any need to conmunicate

with other processors. The sinple communication structure and highly coarse-

grain size make the Mparallel inplenentation strategy very efficient for
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massively parallel MM architectures. In particular, it is highly suitable
for a new class of emerging MIMD architectures, represented by the Intel's
Touchstone Delta and Paragon, whi ch provide a | arge nunber of powerful
processors but a rather simple and limited communication structure) i.e., a
mesh conmuni cation structure [34].

The above strategy, while being the sinplest and nost straightforward, is
not the nost efficient since it is based on the assunption that, though M
processors are available, the conputation of Step | is done in a serial
fashion. However, the conputation of Step I corresponds to performing a two-
or three-dimensional DST and as such it offers a high degree of parallelism
whi ch can be exploited to increase the overall speedup (see [35] or many
references given in [211). This can be better seen by reexamning the
conputations involved in Step | in nore detail. For J = 2, the conputation in

Step I corresponds to performng a two-dinensional DST as

g (0)

a. U= qQ
b. g(0) — PD
C. 0(0) - Q_Q(O)

The N one-dimensional FSTS in Substeps a and ¢ are conpletely decoupled and
can be performed in parallel while Substep ¢ involves a global communication.
For j = 3, the conputation in Step | corresponds to perfornmng a three-

di mensi onal DST as

a. 0= w?
b. l_J_(O) = PU
c. 9@ - Qg(o)

In Substep a, N two-dimensional FSTS can be conputed in parallel. There is an
even higher degree of parallelismin conputation of Substep ¢ since N one-
di mensi onal FSTS can be performed in parallel. However, Substep b again

invol ves a gl obal comunicati on.

Let us assume that a speedup of K is achieved in the computation of Step
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1, Teo and SPHP are then given by

(59) T = NI (JFST/K + JFST + DW)
(60) P, = M(L + /K = MK/Ke1 j=2
(61) SPp = (M+1)/(1 + I/K) = (M+1)K/K+1 J=3

Interestingly, Eqs. (60)-(61) suggest that even a linited speedup in conputing
Step I will result in a rather significant increase in the overall speedup
S, For exanple, a speedup of K =3 will result in a 25% increase in SP o
For large K, say K»>10, SP,. will be very close to M which indicates a |inear
speedup in the conputation. For large problems, i.e. , large Nor J = 3, such a
speedup in the conputation of Step | seens to be easily achievable even on
parallel architectures with sinple comrmnication structures

The above analysis indicates that, under realistic assunptions, the
Mparal l el inplementation of tine-parallel algorithnms on the MM
architectures can result in a speedup close to the linear one. The m ni mum
communi cation and synchroni zation requirements of the tine-parallel algorithns
al so suggests that with any nunmber of processors smaller than Mit is nore

efficient to exploit parallelismin time rather than in space

C. Time- and Space-Parallel |nplementation

Many energing MM parallel architectures, e.g., Intel’s iPsc/860,
Touchstone Delta, and Paragon, use powerful vector processors such as Intel
i860 as the node processor. Another advantage of the time-parallel algorithns
for inplenentation on these architectures is that the conputation performed by
each processor can be efficiently vectorized to exploit the node vector
processing capability and hence increase the overall conputational speed. To
see this, note that, the conputation in Step 11 is already in a form highly
suitable for vector conputation. Many algorithms have been devel oped for
efficient vector conputation of fast transforns (see for exanple [36] or the

references in [21]). An even greater efficiency in vector conputation of Steps
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| and 1l can be achieved by noting that each processor has to perform a
series of decoupled FSTs. Therefore, the conputation can be organized in a way
to further increase the efficiency for vectorization [ 35, 36].

Wth a number_of processors greater than M further speedup can be achieved

by exploiting space-parallelismin conputing Steps Il-111. Again, note that
paral l el conputation of Step Il is straightforward. Exploitation of -space-
parallelismin conmputing Step Il corresponds to parallel conputation of two-

or three-dimensional DST which was discussed above.

VI1. Discussion and Concl usion

In this paper, we developed time-parallel algorithms for solution of a
class of parabolic PDEs defined by Eq. (l). The basic idea in our approach is
to use a transformation based on the eigenvalue-eigenvector deconposition to
diagonalize the matrices involved in the tinme-stepping iterations given by
Egs. (3)-(5). This diagonalization results in a decoupling of the iterations
which in turn allows the solution for all the tine steps to be conputed in
parallel. The time-parallel algorithms achieve maxi numparallelismin tine
since their conmplexity is either of Q(Log M or is independent of M

The time-parallel algorithms for one-, two-, and three-dimensional cases
have a simlar structure for parallel conputation. However, they differ in
their efficiency for serial conmputation. The time-parallel algorithmfor one-
di mensi onal case is highly inefficient for serial conputation, while the one
for three-dinensional case seens to be the nost efficient for seria
conputation. This inplies an optinal efficiency for parallel conputation for
t hree- di mensi onal case since the algorithm not only provides a high degree of
parallelismbut it does so by also reducing the total nunber of operations

W al so devel oped time-parallel algorithms for solution of problemwth
Neunann boundary condition as well as by using higher-order finite-difference

schenes, For the latter case, it was shown that a higher accuracy in space
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discretization can be achieved with no additional computation or communication
cost. If a large nunber of processors are available then a higher accuracy in
time discretization can be also achieved by reducing the time step size At

(and hence increasing M with a small increase in the conputational cost. Note

that, with a sufficient nunber of processors,” the conputation of step Ill is
i ndependent of M while that of Step II, for the worst case, may be increased
by o(Log M).

Qur results clearly show that, unlike the general assunption, the time-
stepping iterations for the class of problens defined by Egq. (1) can be fully
parallelized in time. However, the tine-parallel conputing approach can be
also applied to a wider class of problens, The extension of tine-parallel
algorithms to the solution of Iinear inhonogeneous parabolic PDEs with
constant and variable coefficients is presented in [37]. The generalization of
tinme-parallel conputation approach for solution of a nore general class of
evol utionary PDEs, including both parabolic and hyperbolic PDEs, on irregular

domains is reported in [381.

ACKNOWLEDGMENT

The research described in this paper was performed at the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration (NASA). | am highly indebted to
my colleagues Drs. J. Barhen and N. Toomarian for many insightful discussions,
suggestions, and encouragement.

REFERENCES

[11 R. S. Varga, Matrix lterative Analysis, Prentice-Hall, NJ, 1962.

[2] P. N. Swarztrauber and R. A, Sweet, “Efficient Subroutines for the
Solution of General Elliptic and Parabolic Partial Differential
Equations, " Atmospheric Technol ogy, pp. 79-81, Sept. 1973,

[3] J.M. Otega and R.G. Voigt, Solution of Partial Differential Equations on
Vector and Parallel Computers, SI AM Pub., 1984.

[4] E. Gallopoulos and Y. Saad, "On the Parallel Solution of Parabolic
Equations, " Proc. ACMInt. Conf. on Superconputing, pp. 17-28, June 1989,

[5] S. M. Serbin, "A Schene for Parallelizing Certain Al gorithms for the
Li near |nhonogeneous Heat equation, " SIAM J. Sci. Stat. Comput. ,

30




{e)

[71

[81

91

[101

[111

[121

[131

[141
[151
[161
[171
[181
[191
[20]

[211

[221

Vol . 13(2), pp. 449-458, March 1992.

G. Rodrigue, “A Parallel First-Order Method for Parabolic Partial
Differential equations, ” in High-Speed Computation, J. S. Kowalik (Ed.),
pp. 329-342, Springer-verlag, 1984.

G Rodrigue and D. Wolitzer, “Preconditioned Time-Differencing for the
Parall el Solution of the Heat Equation, "-Proc. 4th S| AM Conf. on Paral | el
Processing, pp. 268-272, 1990.

D. J. Evans, '"Alternating Goup Explicit Methods for the Diffusion
Equation, " Appl. Math. Modelling, Vol. 9, pp. 201-206, 1985.

E. Lelarasnee, A Ruheli, and A L. Sangiovanni-Vincentelli, '’ The Waveform
Rel axation Method for the Time Domain Analysis of Large Scale Integrated
Crcuits, " IEEE Trans. Conputer-Aided Design, Vol. 1, pp. 131-145, 1982,
J. H Saltz and V. K. Nail, '’ Towards Devel opi ng Robust Al gorithns for
Solving Partial Differential Equations on MM Machines, " Parallel
Conputing, Vol. 6, pp. 19-44, 1988.

D. E. Womble, “A Tinme-Stepping Algorithm for Parallel Conputers, " SIAM J.
Sci. Stat. Comput., Vol. 11(5), pp. 824-837, 1990.

W Hackbusch, ' Parabolic Miltigrid Methods, " Proc. 6th Int. Synp. on
Conputing Methods in Applied Sciences and Engineering, Dec. 1983.

G Horton and R Knirsch, "A Time-Parallel Multigrid-Extrapolation Method
for Parabolic Partial Differential Equations, " Parallel Conputing,

vol. 18, pp. 21-29, 1992.

G. Strang and G J. Fix, An Analyss of the Finite Element Method,
Prentice-Hall, Englewood Cliffs, NJ, 1973.

A Fijany,"Time Parallel Al gorithns for Solution of Linear Parabolic
PDEs , * Jet Propul sion Lab. Eng. Menorandum EM 347-93-002, Feb. 1993.

G. Smth, Numerical Solution of Partial Differential Equations. Clarendon
Press, Oxford, 1985.

R.F. Boisvert, "' Algorithms for Special Tridiagonal Systens, ” SIAM J. Sci.
Stat. Comput., Vol. 12(2), pp. 423-442, March 1991.

A. H Saneh, S. C. Chen, and D. J. Kuck,"Parallel Poi sson and Biharmonic
Solvers, " Conputing, Vol. 17, pp. 219-230, 1976.

R. Hockney and C. Jesshope, ParallelComputers. Adam Hilger Ltd., 1981.
S. Barnett, Matrices, Methodsand Applications. G ar endon Press, 1990,
C. Van Loan, Computational frameworks for the Fast Fourier Transform,
SIAM Phi | adel phia 1992.

0. Buneman, "A Conpact Non-Iterative Poisson Solver, " Rep. 249, Stanford
University Institute for Plasma Research, Stanford, California, 1969.

31




[23] B. Buzbee, G Golub, and C. Nielson, "on Direct Methods for Solving
Poi sson Equations, " SIAMJ. Nuner. Anal., Vol. 7, pp. 627-656, 1970,

[241 B. Buzbee, "A Fast Poi sson Solver Anmenable to Parallel Conputation, " |EEE
Trans. Conputers, Vol. C-22, pp. 793-796, 1973.

[25] R Hockney, "A Fast Direct Solution of Poisson’s Equation Using Fourier
Analysis, " J. ACM Vol. 12, pp. 95-113, 1965.

[26] R Sweet, "A Parallel and Vector Variant of the Cyclic Reduction
Algorithm " SIAM J. Stat, Sci. Comput. , Vol. 9, pp. 761-765, 1988.

[271 E. Gallopoulos and Y. Saad,"A Parallel Block Cyclic Reduction Algorithm
for the Fast Solution of Elliptic Equations, " Parallel Conputing,
vol. 10, pp. 143-159, 1989.

[281 P. swarztrauber and R Sweet, “Vector and Parallel nmethods for the Direct
Sol ution of Poisson’s Equation, " J. Computional & Applied Math., Vol. 27,
pp. 241-263, 1989.

[29] A Sameh, "A fast Poisson solver for nultiprocessors, " EllipticProblem
SolversI1,G. Birkhoff and A. Schoenstadt (Eds. ), Academc Press, 1984.

[30] R Wilhelmson and J. Ericksen, “Direct Solution for Poisson’s Equation
in Three Dinensions” J. Conp. Physics, Vol. 25, pp. 319-331, 1977.

[31] R. Sweet, W. Briggs, S. Oivera, J. Porsche, and T. Turnbull,“FFTs and
Thr ee- Di mensi onal Poi sson Sol vers for Hypercube, ” Parallel Conputing,
vol. 17, pp. 121-131, 1991.

[321 C. Tenperton, “Direct Methods for the Solution of the Discrete Posisson
Equation: Some Comparisons, " J. Conp. Physics, Vol. 31, pp. 1-20, 1979.

[331 R Sweet, "A Cyclic Reduction Algorithmfor Solving Bl ock Tridiagonal
Systens of Arbitrary Dinension, " SIAM J. Numer. Anal ., Vol. 14(4),
pp. 706-720, 1977.

[34] R Hockneyand E. Carmona, “Comparison of Communications on the Intel
iPSC/860 and Touchstone Delta,” Parallel Computing, Vol. 18, pp. 1067-
1072, 1992.

[35] P. Swarztrauber, '’ Miltiprocessor FFTs," Parallel Conputing, Vol. 5,
pp. 197-210, 1987.

[36] D. Bailey, "A Hgh Performance Fast Fourier Transform Al gorithm for the
CRAY-2, " J. of Supercomputing, Vol. 1, pp. 43-60, 1987.

[37] A Fijany, "' Time-Parallel A gorithns for Solution of Linear Inhomogeneous
Parabolic PDEs with Constant and Variable Coefficients, " Submtted to
SI AM J. sci. Stat. Comput. .

[381 A Fijany, "on the Structure of Time-Parallel Algorithms for Solution of
Linear Evolutionary Partial Differential Equations, " In preparation.

32




~ (M)
M U
- . M
©) Q u™
~ (1) .
o) —— q M)
) . . (@)
U9 o Y
0(1)
*1 b > Q F—pyV
M D(M)
——(Dz) > 0 —y™
) oo
= (DZ) > 0 -

5(©) . . (b)

u " t M
(DB) [0 -y ™™
D(t) t
— ([)3) = & _____»U(')
~(0) . : C
PRl ©
~(1)
U o t
] D3 > & —VU(”

Figure 1. Computational Structure of Time-Parallel Algorithms.
a: One-Dimensional Problem. b: Two-Dimensional problem.
c: Three-Dimensional Problem.




